

cautions to maintain uniformity of sterilizing and cooling conditions throughout the assay, since packing tubes too closely in the autoclave, or overloading it, may cause variation in the heating rate.

Aseptically add 0.5 mL of *Inoculum* to each tube so prepared, except two of the four containing no *Standard Cyanocobalamin Solution* (the uninoculated blanks). Incubate the tubes at a temperature between 30° and 40° held constant to within ±0.5°, for 16 to 24 hours.

Terminate growth by heating to a temperature not lower than 80° for 5 minutes. Cool to room temperature. After agitating its contents, place the container in a spectrophotometer that has been set at a wavelength of 530 nm, and read the transmittance when a steady state is reached. This steady state is observed a few seconds after agitation when the reading remains constant for 30 seconds or more. Allow approximately the same time interval for the reading on each tube.

With the transmittance set at 100% for the uninoculated blank, read the transmittance of the inoculated blank. If the difference is greater than 5% or if there is evidence of contamination with a foreign microorganism, disregard the results of the assay.

With the transmittance set at 100% for the uninoculated blank, read the transmittance of each of the remaining tubes. Disregard the results of the assay if the slope of the standard curve indicates a problem with sensitivity.

Calculation—Prepare a standard concentration-response curve by the following procedure. Test for and replace any aberrant individual transmittances. For each level of the standard, calculate the response from the sum of the duplicate values of the transmittances (Σ) as the difference, $y = 2.00 - \Sigma$. Plot this response on the ordinate of cross-section paper against the logarithm of the mL of *Standard Cyanocobalamin Solution* per tube on the abscissa, using for the ordinate either an arithmetic or a logarithmic scale, whichever gives the better approximation to a straight line. Draw the straight line or smooth curve that best fits the plotted points.

Calculate the response, y , adding together the two transmittances for each level of the *Assay Preparation*. Read from the standard curve the logarithm of the volume of the *Standard Preparation* corresponding to each of those values of y that falls within the range of the lowest and highest points plotted for the standard. Subtract from each logarithm so obtained the logarithm of the volume, in mL, of the *Assay Preparation* to obtain the difference, x , for each dosage level. Average the values of x for each of three or more dosage levels to obtain $\bar{x} = M'$, the log-relative potency of the *Assay Preparation*. Determine the quantity, in μg , of USP Cyanocobalamin RS corresponding to the cyanocobalamin in the portion of material taken for assay by the equation $\text{antilog } M = \text{antilog } (M' + \log R)$, in which R is the number of μg of cyanocobalamin that was assumed to be present in each mg (or capsule or tablet) of the material taken for assay.

Replication—Repeat the entire determination at least once, using separately prepared *Assay Preparations*. If the difference between the two log potencies M is not greater than 0.08, their mean, M , is the assayed log-potency of the test material (see *Vitamin B₁₂ Activity Assay under Design and Analysis of Biological Assays* (111)). If the two determinations differ by more than 0.08, conduct one or more additional determinations. From the mean of two or more values of M that do not differ by more than 0.15, compute the mean potency of the preparation under assay.

Chemical Tests and Assays

IDENTIFICATION TESTS

⟨181⟩ IDENTIFICATION— ORGANIC NITROGENOUS BASES

This test is for the identification of tertiary amine compounds.

Dissolve 50 mg of the substance under test, if in bulk, in 25 mL of 0.01 N hydrochloric acid, or shake a quantity of powdered tablets or the contents of capsules equivalent to 50 mg of the substance with 25 mL of 0.01 N hydrochloric acid for 10 minutes. Transfer the liquid to a separator, if necessary filtering it and washing the filter and the residue with several small portions of water. In a second separator dissolve 50 mg of the corresponding USP Reference Standard in 25 mL of 0.01 N hydrochloric acid. Treat each solution as follows. Add 2 mL of 1 N sodium hydroxide and 4 mL of carbon disulfide, and shake for 2 minutes. Centrifuge if necessary to clarify the lower phase, and filter it through a dry filter, collecting the filtrate in a small flask provided with a glass stopper.

Determine the absorption spectra of the filtered solutions of both standard and sample without delay, in 1-mm cells between 7 μm and 15 μm , with a suitable IR spectrophotometer, using carbon disulfide in a matched cell as the blank. The spectrum of the solution prepared from the sample shows all of the significant absorption bands present in the spectrum of the solution prepared from the Reference Standard.

⟨191⟩ IDENTIFICATION TESTS— GENERAL

Under this heading are placed tests that are frequently referred to in the Pharmacopeia for the identification of official articles. Before using any acid or base to modify the pH of the sample solution, make sure that the added substance will not interfere with the results of the test. [NOTE—The tests are not intended to be applicable to mixtures of substances unless so specified.]

Acetate—Dissolve about 30 mg of the substance to be examined in 3 mL of water, or use 3 mL of the prescribed solution. Adjust the pH of the solution with sodium hydroxide to slightly alkaline. Add 0.25 mL of lanthanum nitrate TS. If a white precipitate is formed, filter the solution. Add successively 0.1 mL of iodine and potassium iodide TS 3

and 0.1 mL of ammonia TS 2 to the solution. If no blue color is observed, heat carefully to boiling. In the presence of acetates, a dark color develops or a blue precipitate is formed. With neutral solutions of acetates, ferric chloride TS produces a red color that is destroyed by the addition of mineral acids.

Aluminum—With 6 N ammonium hydroxide, solutions of aluminum salts yield a gelatinous, white precipitate that is insoluble in an excess of 6 N ammonium hydroxide. 1 N sodium hydroxide or sodium sulfide TS produces the same precipitate, which dissolves in an excess of either of these reagents.

Ammonium—Add 0.2 g of magnesium oxide to the solution under test. Pass a current of air through the mixture, and direct the gas that escapes to just beneath the surface of an indicator solution, prepared by mixing 1 mL of 0.1 M hydrochloric acid and 0.05 mL of methyl red TS 2. In the presence of ammonium, the color of the indicator solution is changed to yellow. After directing the gas into the indicator solution for a sufficient period of time, add 1 mL of freshly prepared sodium cobaltinitrite TS to the indicator solution. Upon the addition of the sodium cobaltinitrite TS, a yellow precipitate is formed when ammonium is present.

Antimony—With hydrogen sulfide, solutions of antimony (III) compounds, strongly acidified with hydrochloric acid, yield an orange precipitate of antimony sulfide that is insoluble in 6 N ammonium hydroxide, but is soluble in ammonium sulfide TS.

Barium—Solutions of barium salts yield a white precipitate with 2 N sulfuric acid. This precipitate is insoluble in hydrochloric acid and in nitric acid. Barium salts impart a yellowish-green color to a nonluminous flame that appears blue when viewed through green glass.

Benzoate—In neutral solutions, benzoates yield a salmon-colored precipitate with ferric chloride TS. In moderately concentrated solutions, benzoates yield a precipitate of benzoic acid upon acidification with 2 N sulfuric acid. This precipitate is readily soluble in ethyl ether.

Bicarbonate—See *Carbonate*.

Bismuth—When dissolved in a slight excess of nitric acid or hydrochloric acid, bismuth salts yield a white precipitate upon dilution with water. This precipitate is colored brown by hydrogen sulfide, and the resulting compound dissolves in a warm mixture of equal parts of nitric acid and water.

Bisulfite—See *Sulfite*.

Borate—To 1 mL of a borate solution, acidified with hydrochloric acid to litmus, add 3 or 4 drops of iodine TS and 3 or 4 drops of polyvinyl alcohol solution (1 in 50); an intense blue color is produced. When a borate is treated with sulfuric acid, methanol is added, and the mixture is ignited, it burns with a green-bordered flame.

Bromide—Solutions of bromides, upon the addition of chlorine TS, dropwise, liberate bromine, which is dissolved by shaking with chloroform, coloring the chloroform red to reddish brown. Silver nitrate TS produces in solutions of bromides a yellowish-white precipitate that is insoluble in nitric acid and is slightly soluble in 6 N ammonium hydroxide.

Calcium—Solutions of calcium salts form insoluble oxalates when treated as follows. To a solution of the calcium salt (1 in 20) add 2 drops of methyl red TS, and neutralize with 6 N ammonium hydroxide. Add 3 N hydrochloric acid, dropwise, until the solution is acid to the indicator. Upon the addition of ammonium oxalate TS, a white precipitate is formed. This precipitate is insoluble in 6 N acetic acid but dissolves in hydrochloric acid. Calcium salts moistened with hydrochloric acid impart a transient yellowish-red color to a nonluminous flame.

Carbonate—Carbonates and bicarbonates effervesce with acids, evolving a colorless gas that, when passed into calcium hydroxide TS, produces a white precipitate immediately. A cold solution (1 in 20) of a soluble carbonate is

colored red by phenolphthalein TS, while a similar solution of a bicarbonate remains unchanged or is only slightly colored.

Chlorate—Solutions of chlorates yield no precipitate with silver nitrate TS. The addition of sulfuric acid to this mixture produces a white precipitate that is insoluble in nitric acid, but is soluble in 6 N ammonium hydroxide. Upon ignition, chlorates yield chlorides, recognizable by appropriate tests. When sulfuric acid is added to a dry chlorate, decrepitation occurs, and a greenish yellow-gas is evolved. [Cautions—Use only a small amount of chlorate for this test, and exercise extreme caution in performing it.]

Chloride—With silver nitrate TS, solutions of chlorides yield a white, curdy precipitate that is insoluble in nitric acid but is soluble in a slight excess of 6 N ammonium hydroxide. When testing amine (including alkaloidal) hydrochlorides that do not respond to the above test, add one drop of diluted nitric acid and 0.5 mL of silver nitrate TS to a solution of the substance being examined containing, unless otherwise directed in the monograph, about 2 mg of chloride ion in 2 mL; a white, curdy precipitate is formed. Centrifuge the mixture without delay, and decant the supernatant layer. Wash the precipitate with three 1-mL portions of nitric acid solution (1 in 100), and discard the washings. Add ammonia TS dropwise to this precipitate. It dissolves readily. When a monograph specifies that an article responds to the test for dry chlorides, mix the solid to be tested with an equal weight of manganese dioxide, moisten with sulfuric acid, and gently heat the mixture; chlorine, which is recognizable by the production of a blue color with moistened starch iodide paper, is evolved.

Citrate—To 15 mL of pyridine add a few mg of a citrate salt, dissolved or suspended in 1 mL of water, and shake. To this mixture add 5 mL of acetic anhydride, and shake; a light red color is produced.

Cobalt—Solutions of cobalt salts (1 in 20) in 3 N hydrochloric acid yield a red precipitate when heated on a steam bath with an equal volume of a hot, freshly prepared solution of 1-nitroso-2-naphthol (1 in 10) in 9 N acetic acid. Solutions of cobalt salts, when saturated with potassium chloride and treated with potassium nitrite and acetic acid, yield a yellow precipitate.

Copper—Solutions of cupric compounds, acidified with hydrochloric acid, deposit a red film of metallic copper upon a bright, untarnished surface of metallic iron. An excess of 6 N ammonium hydroxide, added to a solution of a cupric salt, produces first a bluish precipitate and then a deep blue-colored solution. With potassium ferrocyanide TS, solutions of cupric salts yield a reddish-brown precipitate, insoluble in diluted acids.

Hypophosphite—When strongly heated, hypophosphites evolve spontaneously flammable phosphine. Hypophosphites in solution yield a white precipitate with mercuric chloride TS. This precipitate becomes gray when an excess of hypophosphite is present. Solutions of hypophosphites, acidified with sulfuric acid, and warmed with cupric sulfate TS yield a red precipitate.

Iodide—Solutions of iodides, upon the addition of chlorine TS, dropwise, liberate iodine, which colors the solution yellow to red. When the solution is shaken with chloroform, the latter is colored violet. The iodine thus liberated gives a blue color with starch TS. Silver nitrate TS produces, in solutions of iodides, a yellow, curdy precipitate that is insoluble in nitric acid and in 6 N ammonium hydroxide.

Iron—Ferrous and ferric compounds in solution yield a black precipitate with ammonium sulfide TS. This precipitate is dissolved by cold 3 N hydrochloric acid with the evolution of hydrogen sulfide.

Ferric Salts—Acid solutions of ferric salts yield a dark blue precipitate with potassium ferrocyanide TS. With an excess of 1 N sodium hydroxide, a reddish-brown precipitate is formed. With ammonium thiocyanate TS, solutions of ferric

salts produce a deep red color that is not destroyed by dilute mineral acids.

Ferrous Salts—Solutions of ferrous salts yield a dark blue precipitate with potassium ferricyanide TS. This precipitate is insoluble in 3 N hydrochloric acid but is decomposed by 1 N sodium hydroxide. With 1 N sodium hydroxide, solutions of ferrous salts yield a greenish-white precipitate, the color rapidly changing to green and then to brown when shaken.

Lactate—When solutions of lactates are acidified with sulfuric acid, potassium permanganate TS is added, and the mixture is heated, acetaldehyde is evolved. This can be detected by allowing the vapor to come into contact with a filter paper that has been moistened with a freshly prepared mixture of equal volumes of 20% aqueous morpholine and sodium nitroferricyanide TS: a blue color is produced.

Lead—With 2 N sulfuric acid, solutions of lead salts yield a white precipitate that is insoluble in 3 N hydrochloric or 2 N nitric acid, but is soluble in warm 1 N sodium hydroxide and in ammonium acetate TS. With potassium chromate TS, solutions of lead salts, free or nearly free from mineral acids, yield a yellow precipitate that is insoluble in 6 N acetic acid but is soluble in 1 N sodium hydroxide.

Lithium—With sodium carbonate TS, moderately concentrated solutions of lithium salts, made alkaline with sodium hydroxide, yield a white precipitate on boiling. The precipitate is soluble in ammonium chloride TS. Lithium salts moistened with hydrochloric acid impart an intense crimson color to a nonluminous flame. Solutions of lithium salts are not precipitated by 2 N sulfuric acid or soluble sulfates (*distinction from strontium*).

Magnesium—Solutions of magnesium salts in the presence of ammonium chloride yield no more than a slightly hazy precipitate when neutralized with ammonium carbonate TS, but on the subsequent addition of dibasic sodium phosphate TS, a white, crystalline precipitate, which is insoluble in 6 N ammonium hydroxide, is formed.

Manganese—With ammonium sulfide TS, solutions of manganous salts yield a salmon-colored precipitate that dissolves in acetic acid.

Mercury—When applied to bright copper foil, solutions of mercury salts, free from an excess of nitric acid, yield a deposit that upon rubbing, becomes bright and silvery in appearance. With hydrogen sulfide, solutions of mercury compounds yield a black precipitate that is insoluble in ammonium sulfide TS and in boiling 2 N nitric acid.

Mercuric Salts—Solutions of mercuric salts yield a yellow precipitate with 1 N sodium hydroxide. They yield also, in neutral solutions with potassium iodide TS, a scarlet precipitate that is very soluble in an excess of the reagent.

Mercurous Salts—Mercurous compounds are decomposed by 1 N sodium hydroxide, producing a black color. With hydrochloric acid, solutions of mercurous salts yield a white precipitate that is blackened by 6 N ammonium hydroxide. With potassium iodide TS, a yellow precipitate, that may become green upon standing, is formed.

Nitrate—When a solution of a nitrate is mixed with an equal volume of sulfuric acid, the mixture is cooled, and a solution of ferrous sulfate is superimposed, a brown color is produced at the junction of the two liquids. When a nitrate is heated with sulfuric acid and metallic copper, brownish-red fumes are evolved. Nitrates do not decolorize acidified potassium permanganate TS (*distinction from nitrites*).

Nitrite—When treated with dilute mineral acids or with 6 N acetic acid, nitrites evolve brownish-red fumes. The solution colors starch-iodide paper blue.

Oxalate—Neutral and alkaline solutions of oxalates yield a white precipitate with calcium chloride TS. This precipitate is insoluble in 6 N acetic acid but is dissolved by hydrochloric acid. Hot acidified solutions of oxalates decolorize potassium permanganate TS.

Permanganate—Solutions of permanganates acidified with sulfuric acid are decolorized by hydrogen peroxide TS and by sodium bisulfite TS, in the cold, and by oxalic acid TS, in hot solution.

Peroxide—Solutions of peroxides slightly acidified with sulfuric acid yield a deep blue color upon the addition of potassium dichromate TS. On shaking the mixture with an equal volume of ethyl ether and allowing the liquids to separate, the blue color is found in the ethyl ether layer.

Phosphate—[NOTE—Where the monograph specifies the identification test for *Phosphate*, use the tests for orthophosphates, unless the instructions specify the use of the pyrophosphate tests or indicate that the product is to be ignited before performing the test.] With silver nitrate TS, neutral solutions of orthophosphates yield a yellow precipitate that is soluble in 2 N nitric acid and in 6 N ammonium hydroxide. With ammonium molybdate TS, acidified solutions of orthophosphates yield a yellow precipitate that is soluble in 6 N ammonium hydroxide. This precipitate may be slow to form. With silver nitrate TS, pyrophosphates obtained by ignition yield a white precipitate that is soluble in 2 N nitric acid and in 6 N ammonium hydroxide. With ammonium molybdate TS, a yellow precipitate that is soluble in 6 N ammonium hydroxide is formed.

Potassium—Potassium compounds impart a violet color to a nonluminous flame, but the presence of small quantities of sodium masks the color unless the yellow color produced by sodium is screened out by viewing through a blue filter that blocks emission at 589 nm (sodium) but is transparent to emission at 404 nm (potassium). Traditionally, cobalt glass has been used, but other suitable filters are commercially available. In neutral, concentrated or moderately concentrated solutions of potassium salts (depending upon the solubility and the potassium content), sodium bitartrate TS produces a white crystalline precipitate that is soluble in 6 N ammonium hydroxide and in solutions of alkali hydroxides and carbonates. The formation of the precipitate, which is usually slow, is accelerated by stirring or rubbing the inside of the test tube with a glass rod. The addition of a small amount of glacial acetic acid or alcohol also promotes the precipitation.

Salicylate—In moderately dilute solutions of salicylates, ferric chloride TS produces a violet color. The addition of acids to moderately concentrated solutions of salicylates produces a white, crystalline precipitate of salicylic acid that melts between 158° and 161°.

Silver—With hydrochloric acid, solutions of silver salts yield a white, curdy precipitate that is insoluble in nitric acid, but is readily soluble in 6 N ammonium hydroxide. A solution of a silver salt to which 6 N ammonium hydroxide and a small quantity of formaldehyde TS are added deposits, upon warming, a mirror of metallic silver upon the sides of the container.

Sodium—Unless otherwise specified in an individual monograph, prepare a solution to contain 0.1 g of the sodium compound in 2 mL of water. Add 2 mL of 15% potassium carbonate, and heat to boiling. No precipitate is formed. Add 4 mL of potassium pyroantimonate TS, and heat to boiling. Allow to cool in ice water and, if necessary, rub the inside of the test tube with a glass rod. A dense precipitate is formed. Sodium compounds impart an intense yellow color to a nonluminous flame.

Sulfate—With barium chloride TS, solutions of sulfates yield a white precipitate that is insoluble in hydrochloric acid and in nitric acid. With lead acetate TS, neutral solutions of sulfates yield a white precipitate that is soluble in ammonium acetate TS. Hydrochloric acid produces no precipitate when added to solutions of sulfates (*distinction from thiosulfates*).

Sulfite—When treated with 3 N hydrochloric acid, sulfites and bisulfites yield sulfur dioxide, which blackens filter paper moistened with mercurous nitrate TS.

Tartrate—Dissolve a few mg of a tartrate salt in 2 drops of sodium metaperiodate solution (1 in 20). Add a drop of 1 N sulfuric acid, and after 5 minutes add a few drops of sulfuric acid followed by a few drops of fuchsin–sulfurous acid TS: a reddish-pink color is produced within 15 minutes.

Thiocyanate—With ferric chloride TS, solutions of thiocyanates yield a red color that is not destroyed by moderately concentrated mineral acids.

Thiosulfate—With hydrochloric acid, solutions of thiosulfates yield a white precipitate that soon turns yellow, and sulfur dioxide, which blackens filter paper moistened with mercurous nitrate TS. The addition of ferric chloride TS to solutions of thiosulfates produces a dark violet color that quickly disappears.

Zinc—In the presence of sodium acetate, solutions of zinc salts yield a white precipitate with hydrogen sulfide. This precipitate is insoluble in acetic acid, but is dissolved by 3 N hydrochloric acid. Ammonium sulfide TS produces a similar precipitate in neutral and in alkaline solutions. With potassium ferrocyanide TS, zinc salts in solution yield a white precipitate that is insoluble in 3 N hydrochloric acid.

graphic chamber with the bottom edge touching the *Developing Solvent*. When the solvent front has risen about 10 cm, remove the sheet from the chamber, and expose the sheet to ammonia vapor. Examine the chromatogram under long-wavelength UV light. Record the positions of the major yellow fluorescent spots: the R_F value of the principal spot obtained from the *Test Solution* and from the *Mixed Test Solution* corresponds to that obtained from the *Standard Solution*.

METHOD II

Resolution Solution—Unless otherwise directed in the individual monograph, prepare a solution in methanol containing 0.5 mg each of USP Chlortetracycline Hydrochloride RS, USP Doxycycline Hyclate RS, USP Oxytetracycline RS, and USP Tetracycline Hydrochloride RS per mL.

Developing Solvent—Prepare a mixture of 0.5 M oxalic acid, previously adjusted with ammonium hydroxide to a pH of 2.0, acetonitrile, and methanol (80:20:20).

Chromatographic Plate—Use a suitable thin-layer chromatographic plate (see *Thin-layer Chromatography* under *Chromatography* (621)) coated with a 0.25-mm layer of octylsilanized chromatographic silica gel mixture. Activate the plate by heating it at 130° for 20 minutes, allow to cool, and use while still warm.

Procedure—Separately apply 1 μ L each of the *Standard Solution*, the *Test Solution*, and the *Resolution Solution* to the *Chromatographic Plate*. Allow the spots to dry, and develop the chromatogram in the *Developing Solvent* until the solvent front has moved about three-fourths of the length of the plate. Remove the plate from the developing chamber, mark the solvent front, and allow to air-dry. Expose the plate to ammonia vapors for 5 minutes, and promptly locate the spots on the plate by viewing under long-wavelength UV light: the chromatogram of the *Resolution Solution* shows clearly separated spots, and the principal spot obtained from the *Test Solution* corresponds in R_F value, intensity, and appearance to that obtained from the *Standard Solution*.

193 IDENTIFICATION— TETRACYCLINES

The following chromatographic procedures are provided to confirm the identity of Pharmacopeial drug substances that are of the tetracycline type, such as doxycycline, oxytetracycline, and tetracycline, and to confirm the identity of such compounds in their respective Pharmacopeial dosage forms. Two procedures are provided, one based on paper chromatography (*Method I*) and the other on thin-layer chromatography (*Method II*). *Method I* is to be used unless otherwise directed in the individual monograph.

Standard Solution—Unless otherwise directed in the individual monograph, dissolve the USP Reference Standard for the drug substance being identified in the same solvent and at the same concentration as for the *Test Solution*.

Test Solution—Prepare as directed in the individual monograph.

METHOD I

pH 3.5 Buffer—Dissolve 13.4 g of anhydrous citric acid and 16.3 g of dibasic sodium phosphate in 1000 mL of water, and mix.

Developing Solvent—On the day of use, mix 10 volumes of chloroform, 20 volumes of nitromethane, and 3 volumes of pyridine.

Mixed Test Solution—Mix equal volumes of the *Standard Solution* and the *Test Solution*.

Chromatographic Sheet—Draw a spotting line 2.5 cm from one edge of a 20-cm \times 20-cm sheet of filter paper (Whatman No. 1, or equivalent). Impregnate the sheet with *pH 3.5 Buffer* by passing it through a trough filled with *pH 3.5 Buffer*, and remove the excess solvent by firmly pressing the sheet between nonfluorescent blotting papers.

Procedure—To a suitable chromatographic chamber, prepared for ascending chromatography (see *Chromatography* (621)) add *Developing Solvent* to a depth of 0.6 cm. Apply at 1.5-cm intervals 2 μ L each of the *Standard Solution*, the *Test Solution*, and the *Mixed Test Solution* to the spotting line of the *Chromatographic Sheet*. Allow the sheet to dry partially, and while still damp place it in the chromato-

197 SPECTROPHOTOMETRIC IDENTIFICATION TESTS

Spectrophotometric tests contribute meaningfully toward the identification of many compendial chemical substances. The test procedures that follow are applicable to substances that absorb IR and/or UV radiation (see *Spectrophotometry and Light-Scattering* (851)).

The IR absorption spectrum of a substance, compared with that obtained concomitantly for the corresponding USP Reference Standard, provides perhaps the most conclusive evidence of the identity of the substance that can be realized from any single test. The UV absorption spectrum, on the other hand, does not exhibit a high degree of specificity. Conformance with both IR absorption and UV absorption test specifications, as called for in a large proportion of compendial monographs, leaves little doubt, if any, regarding the identity of the specimen under examination.

INFRARED ABSORPTION

Seven methods are indicated for the preparation of previously dried test specimens and Reference Standards for anal-